Self-organizing techniques to improve the decentralized multi-task distribution in multi-robot systems

Javier de Lope*, Dario Maravall*, Yadira Quilonez†

Choose an option to locate/access this article:
- Check if you have access through your login credentials or your institution
- Purchase $35.95
- Get Full Text Elsewhere

doi: 10.1016/j.neucom.2014.08.094
Abstract
This paper focuses on the general problem of coordinating multiple robots, in particular, addresses the problem of the distribution of heterogeneous multi-task in a robust and efficient manner. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We take into account a specifically distributed or decentralized approach as we are particularly interested in experimenting with truly autonomous and decentralized techniques in which the robots themselves are responsible for choosing a particular task in an autonomous and individual way. Under this approach we can speak of multi-task selection instead of multi-task assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using different approaches by applying the response threshold models inspired by division of labor in social insects, the application of the reinforcement learning algorithm based on learning automata theory and ant colony optimization-based deterministic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Keywords
Multi-robot systems; Bio-inspired threshold models; Stochastic learning automata; Ant colony optimization; Multi-task distribution; Self-coordination of multiple robots
Javier de Lope (SM94’, M98’) received the MSc in computer science from the Universidad Politécnica de Madrid in 1994 and the PhD degree at the same university in 1998. Currently, he is an Associate Professor in the Department of Applied Intelligent Systems at the Universidad Politécnica de Madrid. His current research interest is centered on the study, design and construction of modular robots and multi-robot systems, and in the development of control systems based on soft-computing techniques. He is currently leading a three-year R&D project for developing industrial robotics mechanisms which follow the guidelines of multi-robot systems and reconfigurable robotics. In the past he also worked on projects related to computer-aided automatic driving by means of external cameras and range sensors and the design and control of humanoid and flying robots.

Dario Maravall (IEEE SM78’, IEEE M80’) was born in Salamanca (1952). He received the MSc in telecommunication engineering from the Universidad Politécnica de Madrid in 1978 and the PhD degree at the same university in 1980. From 1980 to 1988 he was an Associate Professor at the School of Telecommunication Engineering, Universidad Politécnica de Madrid. In 1988 he was promoted to Full Professor at the Faculty of Computer Science, Universidad Politécnica de Madrid. From 2000 to 2004 he was the Director of the Department of Artificial Intelligence of the Faculty of Computer Science at the Universidad Politécnica de Madrid. His current research interests include computer vision, autonomous robots and computational intelligence. He has published extensively on these subjects and has directed more than 20 funded projects, including a five-year R&D project for the automated inspection of wooden pallets using computer vision techniques and robotic mechanisms, with several operating plants in a number of European countries (Spain, France, Italy and United Kingdom) and in USA (video). As a result of this project he holds a patent issued by the European Patent Office. The Hague, The Netherlands.

Yadira Quiñonez obtained the M.Sc. in artificial intelligence from the Universidad Politécnica de Madrid in 2009 and the Ph.D. degree at the same university in 2013. Currently, she is full-time research professor (since January 2013) in the Faculty of Informatics at the Universidad Autónoma de Sinaloa. Her current research interest is focused mainly on the coordination of multi-robot systems. She is currently leading an investigation project related with the autonomous robot navigation using reference images funded by the Universidad Autónoma de Sinaloa.