Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany
ICCSA 2013 Invited Speakers

Dharma Agrawal
University of Cincinnati, USA

Manfred M. Fisher
Vienna University of Economics and Business, Austria

Wenny Rahayu
La Trobe University, Australia
Table of Contents – Part III

Workshop on Software Engineering Processes and Applications (SEPA 2013)

Role “Intellectual Processor” in Conceptual Designing of Software Intensive Systems .. 1
 Petr Sosnin

Modeling and Verification of Change Processes in Collaborative Software Engineering .. 17
 Phan Thi Thanh Huyen, Kunihiko Hiraishi, and Koichiro Ochimizu

Relating Goal Modeling with BPCM Models in a Combined Framework ... 33
 Shang Gao

Increasing the Rigorousness of Measures Definition through a UML/OCL Model Based on the Briand et al.’s Framework 43
 Luis Reynoso, Marcelo Amaolo, Daniel Dolz, Claudio Vaucheret, and Mabel Álvarez

Improving Requirements Specification in WebREd-Tool by Using a NFR’s Classification ... 59
 José Alfonso Aguilar, Sanjay Misra, Aníbal Zaldívar, and Roberto Bernal

Application of an Extended SysML Requirements Diagram to Model Real-Time Control Systems .. 70
 Fabíola Goncalves C. Ribeiro, Sanjay Misra, and Michel S. Soares

Frequent Statement and De-reference Elimination for Distributed Programs .. 82
 Mohamed A. El-Zawawy

Agile Software Development: It Is about Knowledge Management and Creativity .. 98
 Claudio León de la Barra, Broderick Crawford, Ricardo Soto, Sanjay Misra, and Eric Monfroy
Improving Requirements Specification in WebREd-Tool by Using a NFR’s Classification

José Alfonso Aguilar¹, Sanjay Misra², Aníbal Zaldívar¹, and Roberto Bernal³

¹ Señales y Sistemas (SESIS) Facultad de Informática Mazatlán
Universidad Autónoma de Sinaloa, México
82120 Mazatlán, Mexico
² Department of Computer and Information Sciences
Covenant University, Nigeria
³ Facultad de Informática Culiacán
Universidad Autónoma de Sinaloa, México
{ja.aguilar,azaldivar,roberto.bernal}@uas.edu.mx, ssopam@gmail.com
http://sesis.maz.uasnet.mx

Abstract. In Software Engineering (SE), a system has properties that emerge from the combination of its parts; these emergent properties will surely be a matter of system failure if the Non-Functional Requirements (NFRs), or system qualities, are not specified in advance. In Web Engineering (WE) field occurs very similar, but with some other issues related to special characteristics of the Web applications such as the navigation (with the application of the security). In this paper, we improve our Model-Driven tool, named WebREd-Tool, extending the requirements metamodel with a NFRs classification; the main idea is to help the Web application designer with the NFRs specification to make better design decisions and also to be used to validate the quality of the final Web application.

Keywords: Web Engineering, Requirements Engineering, Softgoal, GORE, i-star, A-OOH, NFRs, WebREd-Tool, MDE, MDD.

1 Introduction

Throughout the years, several methods for the development of Web applications (OOWS [1], WebML [2], NDT [3] and UWE [4], A-OOH[5]) have emerged [6], regrettably, only a few offers methodological support for the Requirements Engineering (RE) stage. Nevertheless, the complexity and continuous evolution of the Web applications demands the development of methods and tools (specially) for helping the developer’s to perform the RE process [7] in order to improve the Web Engineering (WE) field. In this respect, the developer needs solutions (tool support) that take into account both Functional (FR) and Non-Functional (NFR) Requirements from the beginning of the Web application development process; what undoubtedly, will help to assure that the final product corresponds qualitatively to the users expectations. Functional Requirements (FRs) describes
the system services, behavior or functions, whereas Non-Functional Requirements (NFRs), also known as quality requirements, specify a constraint in the application to build or in the development process [8].

An effective definition of requirements improves the quality of the final product, in this context, NFRs are critical to the successful implementation of almost every non-trivial software system, this is evidenced by the fact that many documented system failures are directly attributed to the inadequate implementation and maintenance of NFRs [9]. Unfortunately, in most of the Web Engineering approaches, a complete analysis of requirements is performed considering only FRs, thus leaving aside the NFRs until the implementation stage [10]. Following this evidence, there have been many attempts to provide techniques and methods to deal with some aspects of the RE process for the development of Web applications, but there is still a need for solutions which enable the designer to consider both FR and NFRs involved in the Web application development process [11] from the initial stage (requirements stage).

As a fact, requirements are ambiguous during elicitation process, but the introduction of the concept of goals helps in dealing with ambiguity and clarifying requirements. In recent years, the inclusion of Goal-oriented Requirements Engineering (GORE) in Web Engineering [7,5,12] offers a better analysis in Web application design due to the fact that requirements are explicitly specified in goal-oriented models, thus supporting developers in evaluating the implementation of certain requirements (FR and NFRs) for designing successful software and the ability to reason about the software, the organization and the stakeholders goals in the same analysis. This has allowed the stakeholders to choose among the design decisions that can be taken to satisfy the goals and evaluate the implementation of certain requirements in particular (including NFRs). In this field, FRs are related to goals and sub-goals whereas NFRs are named softgoals, commonly used to represent objectives that miss clear-cut criteria, thus, analyzing Non-functional Requirements in terms of goals help in refining, exploring alternatives and resolving conflicts.

This paper is an extension of our recent work [12] about the importance of take into account those components from Requirements Engineering (RE) which are not considered with the necessary emphasis in Web Engineering field such as: Change Impact Analysis (CIA)[13,14], Requirements Traceability (RT) [15] and Non-Functional Requirements Optimization [16]. To this aim, we improve our Model-Driven tool named WebREd-Tool¹ adopting a NFRs classification in order to support the designer to make better design decisions and also to be used to validate the quality of the final Web application. In particular, the novelty of our ongoing work presented in this paper consists of: (i) the conduction of a literature review related to NFRs classification; (ii) the realization of an analysis of the most common Non-Fuctional Requirements used in Web and the

¹ The WebREd-Tool was the best demo tool and poster winner in the International Conference on Web Engineering 2012 (ICWE), developed in conjunction by the Universidad Autónoma de Sinaloa (Mexico), University of Alicante (Spain) and the Universidad Politécnica de Valencia (Spain) [17].
elaboration of a proposal for a basic classification of Non-Functional Requirements for Web Engineering, to do it, six type of NFRs have been considered due to they are the most commonly used in the Web Engineering field: Usability, Performance, Reliability, Safety, Security and Efficiency; (iii) the integration of NFRs classification in the Web requirements metamodel used by the WebREd-Tool for requirements specification, the integration consist in the specialization of the softgoal element from the graphic language used by the WebREd-Tool for Web requirements specification (i^* modeling language [18]).

The main benefit of our approach is that provides specific information about the different NFRs involved during the development process from the initial stage, thus allowing developers to make more informed design decisions for implementing a Web application that fully-satisfies the user expectations. Finally, it is important to mention that the WebREd-Tool is the proof of concept of our Goal-oriented Requirements Engineering (GORE) approach for requirements specification in Web Engineering [6,12].

The rest of the paper is organized as follows: Section 2 presents some related work relevant to the context of this work. Section 3 describes our GORE proposal where is found the contribution of this work. In Section 4, our Model-Driven tool, WebREd-Tool, is shortly described. The specialization of the requirements specification for the NFRs and its application is described in Section 5. Finally, the conclusion and future work is presented in Section 6.

2 Background

Recent studies with regard to Requirement Engineering techniques for the development of Web applications [19] have highlighted that most of the Web Engineering approaches focus on the analysis and design stages and do not give a comprehensive support to the requirements stage (such as WebML [2], OOHDM [20], WSDM [21] or Hera [22]). In some cases, NFRs are considered in a very general manner by almost all the approaches and only two of them, namely NDT and WebML, also provides dedicated tool support, as reviewed in [2] and [3].

Regarding approaches that consider NFRs requirements from early stages of the development process, in [23] the authors propose a metamodel for representing usability requirements for Web applications and in [10] the authors present the state-of-the-art for NFRs in Model-Driven Development (MDD), as well as an approach for considering NFRs into a MDD process from the very beginning of the development process. Chung [24] adopted a goal and process-oriented approach in NFR framework for dealing with Non-Functional Requirements using AND/OR tree. This framework was focused on quality goal satisficing where as Dardenne [25] proposed a goal-based framework with a focus on goal satisfaction. Unfortunately, these approaches are not designed to be used in the Web Engineering field. To the best of our knowledge, the only approaches that use GORE techniques in Web Engineering have been presented in [26,27]. Unfortunately, although these approaches use the i^* modeling framework [18,28] to represent requirements in Web domain, they do not benefit from every i^* feature because
don’t use all the expressiveness of the \(i^*\) framework to represent the special type of requirements of the Web applications such as the related with navigational issues. To overcome this situation, our previous work [12] adapts the well-known taxonomy of Web requirements presented in [29] for the \(i^*\) framework.

To sum up, there have been many attempts to provide techniques and methods to deal with some aspects of the Requirements Engineering process for Web applications. Nevertheless, there is still a need for solutions that considers NFRs from beginning of the Web application development process in order to improve the quality of the Web application perceived by users.

3 A Goal-Oriented Modeling Framework Applied in Web Engineering

This section describes our proposal to specify requirements in the context of the A-OOH (Adaptive Object-Oriented Hypermedia method) Web modeling method [30]. A-OOH is an extension of the OOH (Object-Oriented Hypermedia) [31] method with the inclusion of personalization strategies. This development method is combined with a modeling language named \(i^*\) for requirements specification. The \(i^*\) (pronounced eye-star) is one of the most widespread goal-oriented frameworks, its has been applied for modeling organizations, business processes, requirements specifications and requirements analysis, among others. As a goal-oriented analysis technique, the \(i^*\) framework focuses on the description and evaluation of alternatives and their relationships to the organizational objectives [12].

We shortly describe next an excerpt of the \(i^*\) framework which is relevant for the present work. For a further explanation, we refer the reader to [18,28]. Essentially, the \(i^*\) framework consists of two models: the strategic dependency (SD) model, to describe the dependency relationships (represented as \(\rightarrow\)) among various actors in an organizational context, and the strategic rationale (SR) model, used to describe actor goals and interests and how they might be achieved. Therefore, the SR model (represented as a dashed circle \(\bigcirc\)) provides a detailed way of modeling the intentions of each actor (represented as a circle \(\bigcirc\)), i.e., internal intentional elements and their relationships:

- A goal (ellipse \(\bigcirc\)) represents an (intentional) desire of an actor. Interestingly, goals provide a rationale for requirements but they are not enough for describing how the goal will be satisfied. This can be described through means-end links (\(\longrightarrow\)) representing alternative ways for fulfilling goals.
- A task (hexagon \(\bigcirc\)) describes some work to be performed in a particular way. Decomposition links (\(\longrightarrow\)) are useful for representing the necessary intentional elements for a task to be performed.
- A resource (rectangle \(\square\)) represents some physical or informational entity required for the actor.
- A softgoal (eight-shape \(\bigcirc\)) is a goal whose satisfaction criteria is not clear-cut. How an intentional element contributes to the satisfaction or fulfillment
of a softgoal is determined via contribution links (\(\rightarrow\)). Possible labels for a contribution link are “make”, “some+”, “help”, “hurt”, “some-”, “break”, “unknown”, indicating the (positive, negative or unknown) strength of the contribution.

Even though \(i^*\) provides good mechanisms to model actors and relationships between them, it needs to be adapted to the Web Engineering domain to reflect special Web requirements that are not taken into account in traditional requirement analysis approaches. As the A-OOH approach is UML-compliant, we have used the extension mechanisms of UML in order to adapt the \(i^*\) modeling framework to the taxonomy of Web requirements (Content, Service, Navigational, Layout, Personalization and Non-Functional Requirements) presented in [29]. To do so, (i) we defined a profile to formally represent the adaptation of each one of the \(i^*\) elements with each requirement type from the Web requirements classification adopted [5]; and (ii) we implemented this profile in an EMF (Eclipse Modeling Framework) metamodel adding new EMF classes according to the different kind of Web requirements: the Navigational, Service, Personalization and Layout requirements extends the Task element and the Content requirement extends the Resource class. It is worth noting that NFRs, until now, can be modeled by directly using the softgoal element. In Figure 1 can be seen an extract of the EMF metamodel for Web requirements specification using the \(i^*\) framework. The metamodel has been implemented in the Eclipse [32] IDE (Integrated Development Environment).

Fig. 1. An overview of the original \(i^*\) metamodel implemented in Eclipse (EMF)

The development process of this method is founded in the MDA (Model-Driven Architecture) [11]. MDA is an OMG’s standard and consists of a three-tier architecture with which the requirements are specified at the Computational Independent Model (CIM), from there are derived the Web application conceptual models which corresponds with the Platform Independent Model (PIM) of the MDA. Finally, the Web application conceptual models are used to generate the implementation code; this stage corresponds with the Platform Specific Model (PSM) from the MDA standard. A crucial part of MDA is the concept of
transformation between models either model-to-model (M2M) or model-to-text (M2T). With the M2M transformations is possible the transformation from a model in other one. To use the advantages of MDA, our proposal supports the automatic derivation of Web conceptual models from a requirements model by means of a set of M2M transformation rules defined in [6,12].

4 The WebREd-Tool

The WebREd-Tool\(^2\) is a set of Eclipse [32] plugins that have been developed to assist the designer in the early phases of a Web application development process. With the WebREd-Tool, the designer can specify the Web application requirements by using the i* modelling framework. The WebREd-Tool assists the designer comparing different configurations of functional requirements, while balancing and optimizing non-functional requirements based on the Pareto efficiency [33]. The WebREd-Tool is based on the Model-Driven Development (MDD) paradigm applied in the context of the Web Engineering, this specialization of the MDD is called Model-Driven Web Engineering (MDWE) [11].

![Fig. 2. WebREd-Tool implemented in Eclipse](http://code.google.com/p/webred/)

\(^2\) http://code.google.com/p/webred/
The tool development consists of three main parts. The first one consists on the implementation of the adapted i^* modeling framework for the Web domain. This adaptation was made by defining a EMF (Eclipse Modeling Framework) metamodel and creating a specific class for each type of component of the i^* framework (see Figure 1). In the second part, the metamodel was used within the GMF (Graphical Modeling Framework) to create a graphical editor (see Figure 2). With the graphical editor, the designer can specify the Web application requirements in a graphical environment using the i^* components such as goals, tasks, softgoals, decomposition, means-end and contribution links and the Web requirements types including service, navigational, content, personalization and layout. The tool-box is shown on the right side of Figure 2, including the aforementioned modeling elements. The third part is the implementation of the Pareto algorithm and, based on it, the visualization of requirement configurations.

The WebREd-Tool provides user support on issues such as Change Impact Analysis, Softgoal optimization, as well as requirements traceability in a Model-Driven Web Engineering context. Further explanation is available at [11] and [17]. Although this work was perceived in the context of the A-OOH method, it is in fact a stand-alone, independent approach that can thus be used in any Web Engineering method. Finally, this proposal supports an automatic derivation of Web conceptual models from a requirements model by means of a set of transformation rules, the derivation of the Web application source code is still in development.

5 Softgoal Specialization

It is worth noting that the development of Web applications have some particular requirements that differs from the traditional requirements, especially when it comes to Non-Functional Requirements. These type of requirements are defined and classified in the seminal work of [36], based on the literature review performed in this work, we propose the definition of six types of NFRs. An overview of each kind of NFR for Web Engineering is described below:

- **Usability.** Refers to the user’s ability to use the Web application without requiring any special training.
- **Performance.** It is used to describe the best use of the resources, it is related to performance.
- **Reliability.** Its the capability to maintain the performance of the Web application over the time without losing throughput.
- **Safety.** It is used in order to ensure that the Web application will do only what it is meant to do.
- **Security.** Refers to protect all the information managed in the Web applications, including the session management and the user authentication.
- **Efficiency.** Represents the optimal use of resources, for example the server requests.
This classification of NFRs for Web Engineering is used in order to extend the i^* framework. Specifically, this classification will be used to enrich the expressiveness of the Softgoal element from the i^* modeling framework. A softgoal is an objective without clear-cut criteria [28] and can represent Non-Functional Requirements and relations between Non-Functional Requirements in a goal-oriented modeling context. To this aim, it was necessary to modify the original Web requirements metamodel (see an extract of the metamodel in Fig. 1) in order to extend the definition of the softgoal element in a similar form as was done in our previous work [12] to adapt the FRs classification presented in [29] (see Fig. 3).

![Fig. 3. An overview of the i^* metamodel modified with the NFRs taxonomy](image)

Once the i^* framework was extended with the softgoal specialization, the next step consisted in making a re-engineering process in order to build a new GMF editor, thus integrating new elements to the tool-bar to be able to use the abstract syntax (metamodel), ie the representation of each one of the elements to represent the Non-Functional Requirements.

6 Conclusions and Future Work

In this work, we have presented an extension to our goal-oriented RE approach for the development of Web 1.0 applications named WebREd-Tool. Seeing that a Web application architecture is composed of a collection of design decisions, each design decision can help or hinder certain NFRs. Thus, current tools and methods are focus on expressing components and connectors in the Web application, therefore, design decisions and their relationships with Non-Functional Requirements are often captured in separate design documentation. This disassociation makes architecture comprehension and architecture evolution harder.

In this work, our proposal offers several advantages such as including the specification of Non-Functional Requirements from the requirements analysis stage considering the design decisions from the initial stages of the Web application development process. Since it is supported under a MDA-based process, it reflects the requirements captured in the final product. Future work consists in:
(i) the development of a set of model-to-model transformations test, (iii) the reengineering process in order to verify all the original functions of the WebREd-Tool (requirements traceability, change impact analysis and softgoal optimization) and (iii) the integration of our goal-oriented approach in a full-MDD solution for the development of Rich Internet Applications (RIA’s) within the OOH4RIA approach [37].

Acknowledgments. This work has been partially supported by: Facultad de Informática Mazatlán from Universidad Autónoma de Sinaloa (México), PIFI (Programa de Fortalecimiento Institucional) P2012-25-126, PROFAPI 2012/002 and PROFAPI2013 with the project: “Aplicación de la Ingeniería de Requisitos Orientada a Objetivos en la Ingeniería Web Dirigida por Modelos” from Universidad Autónoma de Sinaloa (México).

References

34. EMF, http://www.eclipse.org/emf/
Author Index

Abreu, Mário I-304
Acharyya, Rashmisnata II-73
Agrawal, Dharma P. V-143
Aguilar, José Alfonso III-59
Ahnert, Tobias V-91
Akdag, Taslima III-408
Alam, Md. Shafiul V-48
Albertí, Margarita I-1
Alek, Nassima II-487, II-574
Allegrini, Elena II-160, II-231, II-288
Almeida, José João II-443
Álvarez, Mabel III-114
Alves, Gabriela II-559
Amaolo, Marcelo III-43
Anderson, Roger W. II-46, II-60
Ando, Takahiro II-559
Andrighetto, Alberto I-84
Ang, Kenneth Li-Minn I-464
Anjos, Endisley III-199
Aquilanti, Vincenzo II-32, II-46, II-60
Areal, Janaina II-559
Arezzo di Trifiletti, Michelangelo II-160
Aromando, Angelo II-652
Arroyo Ohori, Ken I-526
Ashe, Hartmut II-635, IV-221
Assaf, Rida II-129
Attardi, Raffaele IV-541
Auephanwiriyakul, Sansanee III-246
Azevedo, Luiz III-230
Azzato, Antonello IV-304
Bae, Kang-Sik V-127
Bae, Nam Jin III-287
Bae, Sueng Jae I-120, I-131
Baiocchi, Valerio IV-136, IV-150
Balena, Pasquale IV-528, IV-587, IV-600
Balucani, Nadia I-47
Barazzetti, Luigi I-608, IV-328
Barbier, Guillaume I-253
Bartocci, Alessio I-69
Bärwolff, Gihter V-17, V-91
Basappa, Manjamma II-73

Bastianini, Riccardo I-96
Beccali, Marco II-344
Bedini, Roberto II-299
Behera, Dhiren Kumar III-258
Belanzoni, Paola I-57
Belviso, Claudia II-652
Bencivenni, Marco I-84
Beneventano, Domenico I-194, V-462
Benner, Joachim III-466
Ben Yahia, Nour I-683
Bergamaschi, Sonia I-194, V-462
Berger, Ágoston II-529
Bernal, Roberto III-59
Berres, Stefan V-17
Bhatia, Shveta Kundra II-498
Bhattacharya, Indira IV-108
Bhowmik, Avit Kumar IV-120
Bhuruth, Muddun V-77
Bimonte, Sandro IV-253
Biondi, Paolo II-220, II-288
Birkin, Mark IV-179
Bitencourt, Ana Carla Peixoto II-1, II-46, II-60
Blecic, Ivan III-594, IV-284
Boda-Oliveras, Immaculada IV-17
Bocci, Enrico II-256, II-271
Bollini, Letizia III-481
Bona, Luis Carlos Erpen V-281
Bonifazi, Alessandro IV-528
Borfeccia, Flavio III-422
Borg, Erik II-635
Borriello, Filomena IV-515
Borruso, Giuseppe III-630, IV-375, IV-389
Boubaker, Karemt II-220, II-288
Braga, Ana Cristina I-573, I-585
Bravo, Maricela I-452, V-636
Brettschneider, Matthias III-128
Brumana, Raffaella IV-328
Brunner, Stephan II-99
Bruns, Loren V-364
Brus, Jan IV-166
Buarque, Eduardo II-391
Silva Júnior, Luneque Del Rio de Souza e
I-511
Silveira, Fábio II-391
Singh, Manoj Kumar IV-33
Singh, V.B. II-408
Sinnott, Richard O. V-364
Skouteris, Dimitrios I-47
Smokty, Oleg I. V-1
Soares, Michel S. III-70
Sobotka, Gerrit Alexander II-150
Sole, Aurelia IV-473
Sorrentino, Serena I-194, V-462
Sosnin, Petr III-1
Soto, Ricardo III-98, V-452
Stahl, Chris G. V-491
Stankova, Elena N. V-248
Stankute, Jantien V-526
Stratakis, Panagiotis IV-268
Suraci, Vincenzo II-299
Szőke, Gábor II-529
Tagliolato, Paolo III-438
Tajani, Francesco III-493, IV-433, IV-457
Takahashi, Daisuke V-211
Tapete, Deodato II-693
Tarakji, Ayman V-181
Tasso, Sergio I-96
Tavares, Tatiana Aires III-214
Thamm, Hans-Peter III-452
Theera-Umpon, Nipon III-246
Toffanello, Andre II-559
Tong, Thi Huyen Ai IV-238
Torre, Carmelo Maria IV-587, IV-600
Tortora, Genoveffa I-241
Tran, Dang-Hoan V-421
Tran, Hoang Viet I-697, V-154
Tran, Khoi-Nguyen V-232
Tran, Minh-Triet V-502
Tran, Ngoc-Trung V-321
Tran, Ngoc Viet III-160
Tran, Thanh-Toan V-127
Trapani, Ferdinando III-294
Treadwell, Jim N. V-491
Trujillo, Juan IV-253
Trunfio, Giuseppe Andrea III-594, IV-284
Truong, Toan-Thinh V-502
Truong-Hong, Linh IV-61
Tucci, Andrea O.M. II-176
Uddin, Mohammed Nazim V-607
Urzel, Vanda I-585
Van, Ha Duc Son V-437
Van Hoai, Tran I-485
Vautcheret, Claudio III-43
Vecchiocattivi, Franco I-69
Vecchione, Luigi II-256
Venkatachalam, Parvatham IV-33
Verdicchio, Marco I-31
Veronesi, Paolo I-84
Vidal-Filho, Jarbas Nunes III-378
Vidigal, Armando II-559
Vieira, Marcelo Bernades I-646, V-332
Vijaykumar, Nandamudi L. V-295
Vilaça, Rita I-318
Villarini, Mauro II-256, II-271
Vitiello, Giuliana I-241
Vo, Dinh-Phong V-321
Voženilek, Vit IV-166
Walisadeera, Anusha Indika I-228
Wang, Hsiu-Lang V-259, V-270
Wang, Z. I-562
Weragama, Nishan V-143
Wikramanayake, Gihan N. I-228, I-264
Wu, Bo II-623
Wu, Tianjun IV-93
Wu, Wei V-547
Würriehausen, Falk III-309
Yatsu, Hirokazu III-114
Yin, Junjun IV-61
Yoon, Hee-Woong I-131
Yoshitaka, Atsuo V-321, V-348
Yutuc, Wilfredo II-207
Zaldívar, Aníbal III-59
Zaman, Akter Uz III-408
Zayrit, Karima I-204
Zedda, Stefania Valentina IV-77
Zenha-Rela, Mário III-199
Zoccali, Paolo III-550
Zucaro, Letterio II-299
Zucker, Jean-Daniel I-662
Zunino, Alejandro II-475